NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3orbi123i GIF version

Theorem 3orbi123i 1141
Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
Hypotheses
Ref Expression
bi3.1 (φψ)
bi3.2 (χθ)
bi3.3 (τη)
Assertion
Ref Expression
3orbi123i ((φ χ τ) ↔ (ψ θ η))

Proof of Theorem 3orbi123i
StepHypRef Expression
1 bi3.1 . . . 4 (φψ)
2 bi3.2 . . . 4 (χθ)
31, 2orbi12i 507 . . 3 ((φ χ) ↔ (ψ θ))
4 bi3.3 . . 3 (τη)
53, 4orbi12i 507 . 2 (((φ χ) τ) ↔ ((ψ θ) η))
6 df-3or 935 . 2 ((φ χ τ) ↔ ((φ χ) τ))
7 df-3or 935 . 2 ((ψ θ η) ↔ ((ψ θ) η))
85, 6, 73bitr4i 268 1 ((φ χ τ) ↔ (ψ θ η))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
This theorem is referenced by:  cadcomb  1396  ne3anior  2603
  Copyright terms: Public domain W3C validator