New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3orbi123i | GIF version |
Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
bi3.1 | ⊢ (φ ↔ ψ) |
bi3.2 | ⊢ (χ ↔ θ) |
bi3.3 | ⊢ (τ ↔ η) |
Ref | Expression |
---|---|
3orbi123i | ⊢ ((φ ∨ χ ∨ τ) ↔ (ψ ∨ θ ∨ η)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | . . . 4 ⊢ (φ ↔ ψ) | |
2 | bi3.2 | . . . 4 ⊢ (χ ↔ θ) | |
3 | 1, 2 | orbi12i 507 | . . 3 ⊢ ((φ ∨ χ) ↔ (ψ ∨ θ)) |
4 | bi3.3 | . . 3 ⊢ (τ ↔ η) | |
5 | 3, 4 | orbi12i 507 | . 2 ⊢ (((φ ∨ χ) ∨ τ) ↔ ((ψ ∨ θ) ∨ η)) |
6 | df-3or 935 | . 2 ⊢ ((φ ∨ χ ∨ τ) ↔ ((φ ∨ χ) ∨ τ)) | |
7 | df-3or 935 | . 2 ⊢ ((ψ ∨ θ ∨ η) ↔ ((ψ ∨ θ) ∨ η)) | |
8 | 5, 6, 7 | 3bitr4i 268 | 1 ⊢ ((φ ∨ χ ∨ τ) ↔ (ψ ∨ θ ∨ η)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∨ w3o 933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-3or 935 |
This theorem is referenced by: cadcomb 1396 ne3anior 2603 |
Copyright terms: Public domain | W3C validator |