| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3anbi2i | GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (φ ↔ ψ) |
| Ref | Expression |
|---|---|
| 3anbi2i | ⊢ ((χ ∧ φ ∧ θ) ↔ (χ ∧ ψ ∧ θ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 227 | . 2 ⊢ (χ ↔ χ) | |
| 2 | 3anbi1i.1 | . 2 ⊢ (φ ↔ ψ) | |
| 3 | biid 227 | . 2 ⊢ (θ ↔ θ) | |
| 4 | 1, 2, 3 | 3anbi123i 1140 | 1 ⊢ ((χ ∧ φ ∧ θ) ↔ (χ ∧ ψ ∧ θ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |