| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3anbi123i | GIF version | ||
| Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3.1 | ⊢ (φ ↔ ψ) |
| bi3.2 | ⊢ (χ ↔ θ) |
| bi3.3 | ⊢ (τ ↔ η) |
| Ref | Expression |
|---|---|
| 3anbi123i | ⊢ ((φ ∧ χ ∧ τ) ↔ (ψ ∧ θ ∧ η)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3.1 | . . . 4 ⊢ (φ ↔ ψ) | |
| 2 | bi3.2 | . . . 4 ⊢ (χ ↔ θ) | |
| 3 | 1, 2 | anbi12i 678 | . . 3 ⊢ ((φ ∧ χ) ↔ (ψ ∧ θ)) |
| 4 | bi3.3 | . . 3 ⊢ (τ ↔ η) | |
| 5 | 3, 4 | anbi12i 678 | . 2 ⊢ (((φ ∧ χ) ∧ τ) ↔ ((ψ ∧ θ) ∧ η)) |
| 6 | df-3an 936 | . 2 ⊢ ((φ ∧ χ ∧ τ) ↔ ((φ ∧ χ) ∧ τ)) | |
| 7 | df-3an 936 | . 2 ⊢ ((ψ ∧ θ ∧ η) ↔ ((ψ ∧ θ) ∧ η)) | |
| 8 | 5, 6, 7 | 3bitr4i 268 | 1 ⊢ ((φ ∧ χ ∧ τ) ↔ (ψ ∧ θ ∧ η)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3anbi1i 1142 3anbi2i 1143 3anbi3i 1144 syl3anb 1225 cadnot 1394 opksnelsik 4266 eloprabga 5579 restxp 5787 oqelins4 5795 xpassen 6058 mucass 6136 taddc 6230 letc 6232 |
| Copyright terms: Public domain | W3C validator |