NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3anbi3i GIF version

Theorem 3anbi3i 1144
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (φψ)
Assertion
Ref Expression
3anbi3i ((χ θ φ) ↔ (χ θ ψ))

Proof of Theorem 3anbi3i
StepHypRef Expression
1 biid 227 . 2 (χχ)
2 biid 227 . 2 (θθ)
3 3anbi1i.1 . 2 (φψ)
41, 2, 33anbi123i 1140 1 ((χ θ φ) ↔ (χ θ ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  sfin112  4530  dfsi2  4752  cnvsi  5519
  Copyright terms: Public domain W3C validator