New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3anidm23 | GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
Ref | Expression |
---|---|
3anidm23.1 | ⊢ ((φ ∧ ψ ∧ ψ) → χ) |
Ref | Expression |
---|---|
3anidm23 | ⊢ ((φ ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm23.1 | . . 3 ⊢ ((φ ∧ ψ ∧ ψ) → χ) | |
2 | 1 | 3expa 1151 | . 2 ⊢ (((φ ∧ ψ) ∧ ψ) → χ) |
3 | 2 | anabss3 796 | 1 ⊢ ((φ ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: nnpw1ex 4485 sfindbl 4531 pw1fin 6170 |
Copyright terms: Public domain | W3C validator |