New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3expa | GIF version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
3expa | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
2 | 1 | 3exp 1150 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | imp31 421 | 1 ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3anidm23 1241 mp3an2 1265 mpd3an3 1278 rgen3 2712 moi2 3018 sbc3ie 3116 preq12bg 4129 eladdci 4400 nnsucelr 4429 nndisjeq 4430 leltfintr 4459 nnpw1ex 4485 tfinpw1 4495 tfinltfinlem1 4501 tfinltfin 4502 sfin112 4530 sfindbl 4531 sfinltfin 4536 vfinncvntnn 4549 nenpw1pwlem2 6086 ncspw1eu 6160 letc 6232 ce2le 6234 |
Copyright terms: Public domain | W3C validator |