New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3ori | GIF version |
Description: Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.) |
Ref | Expression |
---|---|
3ori.1 | ⊢ (φ ∨ ψ ∨ χ) |
Ref | Expression |
---|---|
3ori | ⊢ ((¬ φ ∧ ¬ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 476 | . 2 ⊢ (¬ (φ ∨ ψ) ↔ (¬ φ ∧ ¬ ψ)) | |
2 | 3ori.1 | . . . 4 ⊢ (φ ∨ ψ ∨ χ) | |
3 | df-3or 935 | . . . 4 ⊢ ((φ ∨ ψ ∨ χ) ↔ ((φ ∨ ψ) ∨ χ)) | |
4 | 2, 3 | mpbi 199 | . . 3 ⊢ ((φ ∨ ψ) ∨ χ) |
5 | 4 | ori 364 | . 2 ⊢ (¬ (φ ∨ ψ) → χ) |
6 | 1, 5 | sylbir 204 | 1 ⊢ ((¬ φ ∧ ¬ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∧ wa 358 ∨ w3o 933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |