NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3ori GIF version

Theorem 3ori 1242
Description: Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.)
Hypothesis
Ref Expression
3ori.1 (φ ψ χ)
Assertion
Ref Expression
3ori ((¬ φ ¬ ψ) → χ)

Proof of Theorem 3ori
StepHypRef Expression
1 ioran 476 . 2 (¬ (φ ψ) ↔ (¬ φ ¬ ψ))
2 3ori.1 . . . 4 (φ ψ χ)
3 df-3or 935 . . . 4 ((φ ψ χ) ↔ ((φ ψ) χ))
42, 3mpbi 199 . . 3 ((φ ψ) χ)
54ori 364 . 2 (¬ (φ ψ) → χ)
61, 5sylbir 204 1 ((¬ φ ¬ ψ) → χ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357   wa 358   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator