NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3impdi GIF version

Theorem 3impdi 1237
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1 (((φ ψ) (φ χ)) → θ)
Assertion
Ref Expression
3impdi ((φ ψ χ) → θ)

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3 (((φ ψ) (φ χ)) → θ)
21anandis 803 . 2 ((φ (ψ χ)) → θ)
323impb 1147 1 ((φ ψ χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator