| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3impexp | GIF version | ||
| Description: impexp 433 with a 3-conjunct antecedent. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| 3impexp | ⊢ (((φ ∧ ψ ∧ χ) → θ) ↔ (φ → (ψ → (χ → θ)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (((φ ∧ ψ ∧ χ) → θ) → ((φ ∧ ψ ∧ χ) → θ)) | |
| 2 | 1 | 3expd 1168 | . 2 ⊢ (((φ ∧ ψ ∧ χ) → θ) → (φ → (ψ → (χ → θ)))) |
| 3 | id 19 | . . 3 ⊢ ((φ → (ψ → (χ → θ))) → (φ → (ψ → (χ → θ)))) | |
| 4 | 3 | 3impd 1165 | . 2 ⊢ ((φ → (ψ → (χ → θ))) → ((φ ∧ ψ ∧ χ) → θ)) |
| 5 | 2, 4 | impbii 180 | 1 ⊢ (((φ ∧ ψ ∧ χ) → θ) ↔ (φ → (ψ → (χ → θ)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3impexpbicom 1367 |
| Copyright terms: Public domain | W3C validator |