NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exbir GIF version

Theorem exbir 1365
Description: Exportation implication also converting head from biconditional to conditional. This proof is exbirVD in set.mm automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) TODO: decide if this is worth keeping.
Assertion
Ref Expression
exbir (((φ ψ) → (χθ)) → (φ → (ψ → (θχ))))

Proof of Theorem exbir
StepHypRef Expression
1 bi2 189 . . 3 ((χθ) → (θχ))
21imim2i 13 . 2 (((φ ψ) → (χθ)) → ((φ ψ) → (θχ)))
32exp3a 425 1 (((φ ψ) → (χθ)) → (φ → (ψ → (θχ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator