New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3ioran | GIF version |
Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.) |
Ref | Expression |
---|---|
3ioran | ⊢ (¬ (φ ∨ ψ ∨ χ) ↔ (¬ φ ∧ ¬ ψ ∧ ¬ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 476 | . . 3 ⊢ (¬ (φ ∨ ψ) ↔ (¬ φ ∧ ¬ ψ)) | |
2 | 1 | anbi1i 676 | . 2 ⊢ ((¬ (φ ∨ ψ) ∧ ¬ χ) ↔ ((¬ φ ∧ ¬ ψ) ∧ ¬ χ)) |
3 | ioran 476 | . . 3 ⊢ (¬ ((φ ∨ ψ) ∨ χ) ↔ (¬ (φ ∨ ψ) ∧ ¬ χ)) | |
4 | df-3or 935 | . . 3 ⊢ ((φ ∨ ψ ∨ χ) ↔ ((φ ∨ ψ) ∨ χ)) | |
5 | 3, 4 | xchnxbir 300 | . 2 ⊢ (¬ (φ ∨ ψ ∨ χ) ↔ (¬ (φ ∨ ψ) ∧ ¬ χ)) |
6 | df-3an 936 | . 2 ⊢ ((¬ φ ∧ ¬ ψ ∧ ¬ χ) ↔ ((¬ φ ∧ ¬ ψ) ∧ ¬ χ)) | |
7 | 2, 5, 6 | 3bitr4i 268 | 1 ⊢ (¬ (φ ∨ ψ ∨ χ) ↔ (¬ φ ∧ ¬ ψ ∧ ¬ χ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∨ w3o 933 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 |
This theorem is referenced by: 3oran 951 cadnot 1394 |
Copyright terms: Public domain | W3C validator |