| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3oran | GIF version | ||
| Description: Triple disjunction in terms of triple conjunction. (Contributed by NM, 8-Oct-2012.) |
| Ref | Expression |
|---|---|
| 3oran | ⊢ ((φ ∨ ψ ∨ χ) ↔ ¬ (¬ φ ∧ ¬ ψ ∧ ¬ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ioran 950 | . . 3 ⊢ (¬ (φ ∨ ψ ∨ χ) ↔ (¬ φ ∧ ¬ ψ ∧ ¬ χ)) | |
| 2 | 1 | con1bii 321 | . 2 ⊢ (¬ (¬ φ ∧ ¬ ψ ∧ ¬ χ) ↔ (φ ∨ ψ ∨ χ)) |
| 3 | 2 | bicomi 193 | 1 ⊢ ((φ ∨ ψ ∨ χ) ↔ ¬ (¬ φ ∧ ¬ ψ ∧ ¬ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ w3o 933 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |