New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xchnxbir | GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ φ ↔ ψ) |
xchnxbir.2 | ⊢ (χ ↔ φ) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ χ ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ φ ↔ ψ) | |
2 | xchnxbir.2 | . . 3 ⊢ (χ ↔ φ) | |
3 | 2 | bicomi 193 | . 2 ⊢ (φ ↔ χ) |
4 | 1, 3 | xchnxbi 299 | 1 ⊢ (¬ χ ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3ioran 950 nsspssun 3489 undif3 3516 |
Copyright terms: Public domain | W3C validator |