| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > xchnxbir | GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchnxbir.1 | ⊢ (¬ φ ↔ ψ) |
| xchnxbir.2 | ⊢ (χ ↔ φ) |
| Ref | Expression |
|---|---|
| xchnxbir | ⊢ (¬ χ ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchnxbir.1 | . 2 ⊢ (¬ φ ↔ ψ) | |
| 2 | xchnxbir.2 | . . 3 ⊢ (χ ↔ φ) | |
| 3 | 2 | bicomi 193 | . 2 ⊢ (φ ↔ χ) |
| 4 | 1, 3 | xchnxbi 299 | 1 ⊢ (¬ χ ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: 3ioran 950 nsspssun 3489 undif3 3516 |
| Copyright terms: Public domain | W3C validator |