New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3jaoian | GIF version |
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaoian.1 | ⊢ ((φ ∧ ψ) → χ) |
3jaoian.2 | ⊢ ((θ ∧ ψ) → χ) |
3jaoian.3 | ⊢ ((τ ∧ ψ) → χ) |
Ref | Expression |
---|---|
3jaoian | ⊢ (((φ ∨ θ ∨ τ) ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoian.1 | . . . 4 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | ex 423 | . . 3 ⊢ (φ → (ψ → χ)) |
3 | 3jaoian.2 | . . . 4 ⊢ ((θ ∧ ψ) → χ) | |
4 | 3 | ex 423 | . . 3 ⊢ (θ → (ψ → χ)) |
5 | 3jaoian.3 | . . . 4 ⊢ ((τ ∧ ψ) → χ) | |
6 | 5 | ex 423 | . . 3 ⊢ (τ → (ψ → χ)) |
7 | 2, 4, 6 | 3jaoi 1245 | . 2 ⊢ ((φ ∨ θ ∨ τ) → (ψ → χ)) |
8 | 7 | imp 418 | 1 ⊢ (((φ ∨ θ ∨ τ) ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∨ w3o 933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |