NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3jaoian GIF version

Theorem 3jaoian 1247
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaoian.1 ((φ ψ) → χ)
3jaoian.2 ((θ ψ) → χ)
3jaoian.3 ((τ ψ) → χ)
Assertion
Ref Expression
3jaoian (((φ θ τ) ψ) → χ)

Proof of Theorem 3jaoian
StepHypRef Expression
1 3jaoian.1 . . . 4 ((φ ψ) → χ)
21ex 423 . . 3 (φ → (ψχ))
3 3jaoian.2 . . . 4 ((θ ψ) → χ)
43ex 423 . . 3 (θ → (ψχ))
5 3jaoian.3 . . . 4 ((τ ψ) → χ)
65ex 423 . . 3 (τ → (ψχ))
72, 4, 63jaoi 1245 . 2 ((φ θ τ) → (ψχ))
87imp 418 1 (((φ θ τ) ψ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator