New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3jaod | GIF version |
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (φ → (ψ → χ)) |
3jaod.2 | ⊢ (φ → (θ → χ)) |
3jaod.3 | ⊢ (φ → (τ → χ)) |
Ref | Expression |
---|---|
3jaod | ⊢ (φ → ((ψ ∨ θ ∨ τ) → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | 3jaod.2 | . 2 ⊢ (φ → (θ → χ)) | |
3 | 3jaod.3 | . 2 ⊢ (φ → (τ → χ)) | |
4 | 3jao 1243 | . 2 ⊢ (((ψ → χ) ∧ (θ → χ) ∧ (τ → χ)) → ((ψ ∨ θ ∨ τ) → χ)) | |
5 | 1, 2, 3, 4 | syl3anc 1182 | 1 ⊢ (φ → ((ψ ∨ θ ∨ τ) → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 |
This theorem is referenced by: 3jaodan 1248 3jaao 1249 ltfintri 4467 nchoicelem1 6290 nchoicelem2 6291 |
Copyright terms: Public domain | W3C validator |