NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3jaod GIF version

Theorem 3jaod 1246
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaod.1 (φ → (ψχ))
3jaod.2 (φ → (θχ))
3jaod.3 (φ → (τχ))
Assertion
Ref Expression
3jaod (φ → ((ψ θ τ) → χ))

Proof of Theorem 3jaod
StepHypRef Expression
1 3jaod.1 . 2 (φ → (ψχ))
2 3jaod.2 . 2 (φ → (θχ))
3 3jaod.3 . 2 (φ → (τχ))
4 3jao 1243 . 2 (((ψχ) (θχ) (τχ)) → ((ψ θ τ) → χ))
51, 2, 3, 4syl3anc 1182 1 (φ → ((ψ θ τ) → χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936
This theorem is referenced by:  3jaodan  1248  3jaao  1249  ltfintri  4467  nchoicelem1  6290  nchoicelem2  6291
  Copyright terms: Public domain W3C validator