NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3jaodan GIF version

Theorem 3jaodan 1248
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((φ ψ) → χ)
3jaodan.2 ((φ θ) → χ)
3jaodan.3 ((φ τ) → χ)
Assertion
Ref Expression
3jaodan ((φ (ψ θ τ)) → χ)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((φ ψ) → χ)
21ex 423 . . 3 (φ → (ψχ))
3 3jaodan.2 . . . 4 ((φ θ) → χ)
43ex 423 . . 3 (φ → (θχ))
5 3jaodan.3 . . . 4 ((φ τ) → χ)
65ex 423 . . 3 (φ → (τχ))
72, 4, 63jaod 1246 . 2 (φ → ((ψ θ τ) → χ))
87imp 418 1 ((φ (ψ θ τ)) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator