New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3jaodan | GIF version |
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaodan.1 | ⊢ ((φ ∧ ψ) → χ) |
3jaodan.2 | ⊢ ((φ ∧ θ) → χ) |
3jaodan.3 | ⊢ ((φ ∧ τ) → χ) |
Ref | Expression |
---|---|
3jaodan | ⊢ ((φ ∧ (ψ ∨ θ ∨ τ)) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaodan.1 | . . . 4 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | ex 423 | . . 3 ⊢ (φ → (ψ → χ)) |
3 | 3jaodan.2 | . . . 4 ⊢ ((φ ∧ θ) → χ) | |
4 | 3 | ex 423 | . . 3 ⊢ (φ → (θ → χ)) |
5 | 3jaodan.3 | . . . 4 ⊢ ((φ ∧ τ) → χ) | |
6 | 5 | ex 423 | . . 3 ⊢ (φ → (τ → χ)) |
7 | 2, 4, 6 | 3jaod 1246 | . 2 ⊢ (φ → ((ψ ∨ θ ∨ τ) → χ)) |
8 | 7 | imp 418 | 1 ⊢ ((φ ∧ (ψ ∨ θ ∨ τ)) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∨ w3o 933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |