NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3mix2 GIF version

Theorem 3mix2 1125
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2 (φ → (ψ φ χ))

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1124 . 2 (φ → (φ χ ψ))
2 3orrot 940 . 2 ((ψ φ χ) ↔ (φ χ ψ))
31, 2sylibr 203 1 (φ → (ψ φ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
This theorem is referenced by:  3mix2i  1128  3jaob  1244  ltfintri  4467
  Copyright terms: Public domain W3C validator