NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3mix1 GIF version

Theorem 3mix1 1124
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix1 (φ → (φ ψ χ))

Proof of Theorem 3mix1
StepHypRef Expression
1 orc 374 . 2 (φ → (φ (ψ χ)))
2 3orass 937 . 2 ((φ ψ χ) ↔ (φ (ψ χ)))
31, 2sylibr 203 1 (φ → (φ ψ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
This theorem is referenced by:  3mix2  1125  3mix3  1126  3mix1i  1127  3jaob  1244  ltfintri  4467  nncdiv3  6278
  Copyright terms: Public domain W3C validator