NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3orrot GIF version

Theorem 3orrot 940
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3orrot ((φ ψ χ) ↔ (ψ χ φ))

Proof of Theorem 3orrot
StepHypRef Expression
1 orcom 376 . 2 ((φ (ψ χ)) ↔ ((ψ χ) φ))
2 3orass 937 . 2 ((φ ψ χ) ↔ (φ (ψ χ)))
3 df-3or 935 . 2 ((ψ χ φ) ↔ ((ψ χ) φ))
41, 2, 33bitr4i 268 1 ((φ ψ χ) ↔ (ψ χ φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
This theorem is referenced by:  3mix2  1125  3mix3  1126  eueq3  3012  tprot  3816  nncdiv3  6278
  Copyright terms: Public domain W3C validator