Step | Hyp | Ref
| Expression |
1 | | opkeq2 4060 |
. . . . . . . 8
⊢ (n = N →
⟪M, n⟫ = ⟪M, N⟫) |
2 | 1 | eleq1d 2419 |
. . . . . . 7
⊢ (n = N →
(⟪M, n⟫ ∈
<fin ↔ ⟪M,
N⟫ ∈ <fin )) |
3 | | eqeq2 2362 |
. . . . . . 7
⊢ (n = N →
(M = n
↔ M = N)) |
4 | | opkeq1 4059 |
. . . . . . . 8
⊢ (n = N →
⟪n, M⟫ = ⟪N, M⟫) |
5 | 4 | eleq1d 2419 |
. . . . . . 7
⊢ (n = N →
(⟪n, M⟫ ∈
<fin ↔ ⟪N,
M⟫ ∈ <fin )) |
6 | 2, 3, 5 | 3orbi123d 1251 |
. . . . . 6
⊢ (n = N →
((⟪M, n⟫ ∈
<fin ∨ M = n ∨ ⟪n,
M⟫ ∈ <fin ) ↔ (⟪M, N⟫
∈ <fin
∨ M = N ∨
⟪N, M⟫ ∈
<fin ))) |
7 | 6 | imbi2d 307 |
. . . . 5
⊢ (n = N →
((M ≠ ∅ → (⟪M, n⟫
∈ <fin
∨ M = n ∨
⟪n, M⟫ ∈
<fin )) ↔ (M ≠ ∅ → (⟪M, N⟫
∈ <fin
∨ M = N ∨
⟪N, M⟫ ∈
<fin )))) |
8 | 7 | imbi2d 307 |
. . . 4
⊢ (n = N →
((M ∈
Nn → (M
≠ ∅ → (⟪M, n⟫
∈ <fin
∨ M = n ∨
⟪n, M⟫ ∈
<fin ))) ↔ (M ∈ Nn → (M ≠ ∅ →
(⟪M, N⟫ ∈
<fin ∨ M = N ∨ ⟪N,
M⟫ ∈ <fin ))))) |
9 | | ltfintrilem1 4465 |
. . . . . 6
⊢ {k ∣ (n ∈ Nn → (k ≠
∅ → (⟪k, n⟫
∈ <fin
∨ k = n ∨
⟪n, k⟫ ∈
<fin )))} ∈ V |
10 | | neeq1 2524 |
. . . . . . . 8
⊢ (k = 0c → (k ≠ ∅ ↔
0c ≠ ∅)) |
11 | | opkeq1 4059 |
. . . . . . . . . 10
⊢ (k = 0c → ⟪k, n⟫ =
⟪0c, n⟫) |
12 | 11 | eleq1d 2419 |
. . . . . . . . 9
⊢ (k = 0c → (⟪k, n⟫
∈ <fin ↔
⟪0c, n⟫
∈ <fin )) |
13 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (k = 0c → (k = n ↔
0c = n)) |
14 | | opkeq2 4060 |
. . . . . . . . . 10
⊢ (k = 0c → ⟪n, k⟫ =
⟪n,
0c⟫) |
15 | 14 | eleq1d 2419 |
. . . . . . . . 9
⊢ (k = 0c → (⟪n, k⟫
∈ <fin ↔ ⟪n, 0c⟫ ∈ <fin )) |
16 | 12, 13, 15 | 3orbi123d 1251 |
. . . . . . . 8
⊢ (k = 0c → ((⟪k, n⟫
∈ <fin
∨ k = n ∨
⟪n, k⟫ ∈
<fin ) ↔ (⟪0c, n⟫ ∈
<fin ∨ 0c =
n ∨
⟪n, 0c⟫
∈ <fin ))) |
17 | 10, 16 | imbi12d 311 |
. . . . . . 7
⊢ (k = 0c → ((k ≠ ∅ →
(⟪k, n⟫ ∈
<fin ∨ k = n ∨ ⟪n,
k⟫ ∈ <fin )) ↔
(0c ≠ ∅ →
(⟪0c, n⟫
∈ <fin
∨ 0c = n ∨ ⟪n,
0c⟫ ∈
<fin )))) |
18 | 17 | imbi2d 307 |
. . . . . 6
⊢ (k = 0c → ((n ∈ Nn → (k ≠
∅ → (⟪k, n⟫
∈ <fin
∨ k = n ∨
⟪n, k⟫ ∈
<fin ))) ↔ (n ∈ Nn →
(0c ≠ ∅ →
(⟪0c, n⟫
∈ <fin
∨ 0c = n ∨ ⟪n,
0c⟫ ∈
<fin ))))) |
19 | | neeq1 2524 |
. . . . . . . 8
⊢ (k = m →
(k ≠ ∅ ↔ m
≠ ∅)) |
20 | | opkeq1 4059 |
. . . . . . . . . 10
⊢ (k = m →
⟪k, n⟫ = ⟪m, n⟫) |
21 | 20 | eleq1d 2419 |
. . . . . . . . 9
⊢ (k = m →
(⟪k, n⟫ ∈
<fin ↔ ⟪m,
n⟫ ∈ <fin )) |
22 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (k = m →
(k = n
↔ m = n)) |
23 | | opkeq2 4060 |
. . . . . . . . . 10
⊢ (k = m →
⟪n, k⟫ = ⟪n, m⟫) |
24 | 23 | eleq1d 2419 |
. . . . . . . . 9
⊢ (k = m →
(⟪n, k⟫ ∈
<fin ↔ ⟪n,
m⟫ ∈ <fin )) |
25 | 21, 22, 24 | 3orbi123d 1251 |
. . . . . . . 8
⊢ (k = m →
((⟪k, n⟫ ∈
<fin ∨ k = n ∨ ⟪n,
k⟫ ∈ <fin ) ↔ (⟪m, n⟫
∈ <fin
∨ m = n ∨
⟪n, m⟫ ∈
<fin ))) |
26 | 19, 25 | imbi12d 311 |
. . . . . . 7
⊢ (k = m →
((k ≠ ∅ → (⟪k, n⟫
∈ <fin
∨ k = n ∨
⟪n, k⟫ ∈
<fin )) ↔ (m ≠ ∅ → (⟪m, n⟫
∈ <fin
∨ m = n ∨
⟪n, m⟫ ∈
<fin )))) |
27 | 26 | imbi2d 307 |
. . . . . 6
⊢ (k = m →
((n ∈
Nn → (k
≠ ∅ → (⟪k, n⟫
∈ <fin
∨ k = n ∨
⟪n, k⟫ ∈
<fin ))) ↔ (n ∈ Nn → (m ≠ ∅ →
(⟪m, n⟫ ∈
<fin ∨ m = n ∨ ⟪n,
m⟫ ∈ <fin ))))) |
28 | | neeq1 2524 |
. . . . . . . 8
⊢ (k = (m
+c 1c) → (k ≠ ∅ ↔
(m +c
1c) ≠ ∅)) |
29 | | opkeq1 4059 |
. . . . . . . . . 10
⊢ (k = (m
+c 1c) → ⟪k, n⟫ =
⟪(m +c
1c), n⟫) |
30 | 29 | eleq1d 2419 |
. . . . . . . . 9
⊢ (k = (m
+c 1c) → (⟪k, n⟫
∈ <fin ↔ ⟪(m +c 1c),
n⟫ ∈ <fin )) |
31 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (k = (m
+c 1c) → (k = n ↔
(m +c
1c) = n)) |
32 | | opkeq2 4060 |
. . . . . . . . . 10
⊢ (k = (m
+c 1c) → ⟪n, k⟫ =
⟪n, (m +c
1c)⟫) |
33 | 32 | eleq1d 2419 |
. . . . . . . . 9
⊢ (k = (m
+c 1c) → (⟪n, k⟫
∈ <fin ↔ ⟪n, (m
+c 1c)⟫ ∈ <fin )) |
34 | 30, 31, 33 | 3orbi123d 1251 |
. . . . . . . 8
⊢ (k = (m
+c 1c) → ((⟪k, n⟫
∈ <fin
∨ k = n ∨
⟪n, k⟫ ∈
<fin ) ↔ (⟪(m
+c 1c), n⟫ ∈
<fin ∨ (m +c 1c) =
n ∨
⟪n, (m +c 1c)⟫
∈ <fin ))) |
35 | 28, 34 | imbi12d 311 |
. . . . . . 7
⊢ (k = (m
+c 1c) → ((k ≠ ∅ →
(⟪k, n⟫ ∈
<fin ∨ k = n ∨ ⟪n,
k⟫ ∈ <fin )) ↔ ((m +c 1c) ≠
∅ → (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin )))) |
36 | 35 | imbi2d 307 |
. . . . . 6
⊢ (k = (m
+c 1c) → ((n ∈ Nn → (k ≠
∅ → (⟪k, n⟫
∈ <fin
∨ k = n ∨
⟪n, k⟫ ∈
<fin ))) ↔ (n ∈ Nn → ((m +c 1c) ≠
∅ → (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin ))))) |
37 | | neeq1 2524 |
. . . . . . . 8
⊢ (k = M →
(k ≠ ∅ ↔ M
≠ ∅)) |
38 | | opkeq1 4059 |
. . . . . . . . . 10
⊢ (k = M →
⟪k, n⟫ = ⟪M, n⟫) |
39 | 38 | eleq1d 2419 |
. . . . . . . . 9
⊢ (k = M →
(⟪k, n⟫ ∈
<fin ↔ ⟪M,
n⟫ ∈ <fin )) |
40 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (k = M →
(k = n
↔ M = n)) |
41 | | opkeq2 4060 |
. . . . . . . . . 10
⊢ (k = M →
⟪n, k⟫ = ⟪n, M⟫) |
42 | 41 | eleq1d 2419 |
. . . . . . . . 9
⊢ (k = M →
(⟪n, k⟫ ∈
<fin ↔ ⟪n,
M⟫ ∈ <fin )) |
43 | 39, 40, 42 | 3orbi123d 1251 |
. . . . . . . 8
⊢ (k = M →
((⟪k, n⟫ ∈
<fin ∨ k = n ∨ ⟪n,
k⟫ ∈ <fin ) ↔ (⟪M, n⟫
∈ <fin
∨ M = n ∨
⟪n, M⟫ ∈
<fin ))) |
44 | 37, 43 | imbi12d 311 |
. . . . . . 7
⊢ (k = M →
((k ≠ ∅ → (⟪k, n⟫
∈ <fin
∨ k = n ∨
⟪n, k⟫ ∈
<fin )) ↔ (M ≠ ∅ → (⟪M, n⟫
∈ <fin
∨ M = n ∨
⟪n, M⟫ ∈
<fin )))) |
45 | 44 | imbi2d 307 |
. . . . . 6
⊢ (k = M →
((n ∈
Nn → (k
≠ ∅ → (⟪k, n⟫
∈ <fin
∨ k = n ∨
⟪n, k⟫ ∈
<fin ))) ↔ (n ∈ Nn → (M ≠ ∅ →
(⟪M, n⟫ ∈
<fin ∨ M = n ∨ ⟪n,
M⟫ ∈ <fin ))))) |
46 | | 0cminle 4461 |
. . . . . . . . . 10
⊢ (n ∈ Nn → ⟪0c, n⟫ ∈
≤fin ) |
47 | 46 | adantr 451 |
. . . . . . . . 9
⊢ ((n ∈ Nn ∧
0c ≠ ∅) →
⟪0c, n⟫
∈ ≤fin ) |
48 | | 0cex 4392 |
. . . . . . . . . . 11
⊢
0c ∈
V |
49 | | lefinlteq 4463 |
. . . . . . . . . . 11
⊢
((0c ∈ V ∧ n ∈ Nn ∧ 0c ≠ ∅) → (⟪0c, n⟫ ∈
≤fin ↔ (⟪0c, n⟫ ∈
<fin ∨ 0c =
n))) |
50 | 48, 49 | mp3an1 1264 |
. . . . . . . . . 10
⊢ ((n ∈ Nn ∧
0c ≠ ∅) →
(⟪0c, n⟫
∈ ≤fin ↔
(⟪0c, n⟫
∈ <fin
∨ 0c = n))) |
51 | | orcom 376 |
. . . . . . . . . 10
⊢
((⟪0c, n⟫ ∈
<fin ∨ 0c =
n) ↔ (0c = n ∨
⟪0c, n⟫
∈ <fin )) |
52 | 50, 51 | syl6bb 252 |
. . . . . . . . 9
⊢ ((n ∈ Nn ∧
0c ≠ ∅) →
(⟪0c, n⟫
∈ ≤fin ↔
(0c = n ∨ ⟪0c, n⟫ ∈
<fin ))) |
53 | 47, 52 | mpbid 201 |
. . . . . . . 8
⊢ ((n ∈ Nn ∧
0c ≠ ∅) →
(0c = n ∨ ⟪0c, n⟫ ∈
<fin )) |
54 | | 3mix2 1125 |
. . . . . . . . 9
⊢
(0c = n →
(⟪0c, n⟫
∈ <fin
∨ 0c = n ∨ ⟪n,
0c⟫ ∈
<fin )) |
55 | | 3mix1 1124 |
. . . . . . . . 9
⊢
(⟪0c, n⟫ ∈
<fin → (⟪0c, n⟫ ∈
<fin ∨ 0c =
n ∨
⟪n, 0c⟫
∈ <fin )) |
56 | 54, 55 | jaoi 368 |
. . . . . . . 8
⊢
((0c = n ∨ ⟪0c, n⟫ ∈
<fin ) → (⟪0c, n⟫ ∈
<fin ∨ 0c =
n ∨
⟪n, 0c⟫
∈ <fin )) |
57 | 53, 56 | syl 15 |
. . . . . . 7
⊢ ((n ∈ Nn ∧
0c ≠ ∅) →
(⟪0c, n⟫
∈ <fin
∨ 0c = n ∨ ⟪n,
0c⟫ ∈
<fin )) |
58 | 57 | ex 423 |
. . . . . 6
⊢ (n ∈ Nn → (0c ≠ ∅ → (⟪0c, n⟫ ∈
<fin ∨ 0c =
n ∨
⟪n, 0c⟫
∈ <fin ))) |
59 | | addcnnul 4453 |
. . . . . . . . . . . . 13
⊢ ((m +c 1c) ≠
∅ → (m ≠ ∅ ∧ 1c ≠ ∅)) |
60 | 59 | simpld 445 |
. . . . . . . . . . . 12
⊢ ((m +c 1c) ≠
∅ → m ≠ ∅) |
61 | 60 | 3ad2ant3 978 |
. . . . . . . . . . 11
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → m ≠ ∅) |
62 | | addc32 4416 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((m +c p) +c 1c) =
((m +c
1c) +c p) |
63 | 62 | eqeq2i 2363 |
. . . . . . . . . . . . . . . . . . 19
⊢ (n = ((m
+c p)
+c 1c) ↔ n = ((m
+c 1c) +c p)) |
64 | 63 | rexbii 2639 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃p ∈ Nn n = ((m
+c p)
+c 1c) ↔ ∃p ∈ Nn n = ((m
+c 1c) +c p)) |
65 | 64 | biimpi 186 |
. . . . . . . . . . . . . . . . 17
⊢ (∃p ∈ Nn n = ((m
+c p)
+c 1c) → ∃p ∈ Nn n = ((m
+c 1c) +c p)) |
66 | 65 | adantl 452 |
. . . . . . . . . . . . . . . 16
⊢ ((m ≠ ∅ ∧ ∃p ∈ Nn n = ((m +c p) +c 1c))
→ ∃p ∈ Nn n = ((m +c 1c)
+c p)) |
67 | 66 | a1i 10 |
. . . . . . . . . . . . . . 15
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → ((m ≠ ∅ ∧ ∃p ∈ Nn n = ((m +c p) +c 1c))
→ ∃p ∈ Nn n = ((m +c 1c)
+c p))) |
68 | | opkltfing 4449 |
. . . . . . . . . . . . . . . 16
⊢ ((m ∈ Nn ∧ n ∈ Nn ) → (⟪m, n⟫
∈ <fin ↔ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m +c p) +c
1c)))) |
69 | 68 | 3adant3 975 |
. . . . . . . . . . . . . . 15
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (⟪m, n⟫
∈ <fin ↔ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m +c p) +c
1c)))) |
70 | | simp1 955 |
. . . . . . . . . . . . . . . . 17
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → m ∈ Nn ) |
71 | | peano2 4403 |
. . . . . . . . . . . . . . . . 17
⊢ (m ∈ Nn → (m
+c 1c) ∈
Nn ) |
72 | 70, 71 | syl 15 |
. . . . . . . . . . . . . . . 16
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (m +c 1c) ∈ Nn
) |
73 | | simp2 956 |
. . . . . . . . . . . . . . . 16
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → n ∈ Nn ) |
74 | | opklefing 4448 |
. . . . . . . . . . . . . . . 16
⊢ (((m +c 1c) ∈ Nn ∧ n ∈ Nn ) →
(⟪(m +c
1c), n⟫ ∈ ≤fin ↔ ∃p ∈ Nn n = ((m
+c 1c) +c p))) |
75 | 72, 73, 74 | syl2anc 642 |
. . . . . . . . . . . . . . 15
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (⟪(m +c 1c),
n⟫ ∈ ≤fin ↔ ∃p ∈ Nn n = ((m
+c 1c) +c p))) |
76 | 67, 69, 75 | 3imtr4d 259 |
. . . . . . . . . . . . . 14
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (⟪m, n⟫
∈ <fin → ⟪(m +c 1c),
n⟫ ∈ ≤fin )) |
77 | | lefinlteq 4463 |
. . . . . . . . . . . . . . 15
⊢ (((m +c 1c) ∈ Nn ∧ n ∈ Nn ∧ (m
+c 1c) ≠ ∅) → (⟪(m +c 1c),
n⟫ ∈ ≤fin ↔ (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n))) |
78 | 71, 77 | syl3an1 1215 |
. . . . . . . . . . . . . 14
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (⟪(m +c 1c),
n⟫ ∈ ≤fin ↔ (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n))) |
79 | 76, 78 | sylibd 205 |
. . . . . . . . . . . . 13
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (⟪m, n⟫
∈ <fin →
(⟪(m +c
1c), n⟫ ∈ <fin
∨ (m +c
1c) = n))) |
80 | | 3mix1 1124 |
. . . . . . . . . . . . . 14
⊢ (⟪(m +c 1c),
n⟫ ∈ <fin → (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin )) |
81 | | 3mix2 1125 |
. . . . . . . . . . . . . 14
⊢ ((m +c 1c) =
n → (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin )) |
82 | 80, 81 | jaoi 368 |
. . . . . . . . . . . . 13
⊢ ((⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n) →
(⟪(m +c
1c), n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin )) |
83 | 79, 82 | syl6 29 |
. . . . . . . . . . . 12
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (⟪m, n⟫
∈ <fin →
(⟪(m +c
1c), n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin ))) |
84 | | ltfinp1 4462 |
. . . . . . . . . . . . . . . 16
⊢ ((m ∈ Nn ∧ m ≠ ∅) →
⟪m, (m +c 1c)⟫
∈ <fin ) |
85 | 60, 84 | sylan2 460 |
. . . . . . . . . . . . . . 15
⊢ ((m ∈ Nn ∧ (m +c 1c) ≠
∅) → ⟪m, (m
+c 1c)⟫ ∈ <fin ) |
86 | 85 | 3adant2 974 |
. . . . . . . . . . . . . 14
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → ⟪m, (m
+c 1c)⟫ ∈ <fin ) |
87 | | opkeq1 4059 |
. . . . . . . . . . . . . . 15
⊢ (m = n →
⟪m, (m +c 1c)⟫
= ⟪n, (m +c
1c)⟫) |
88 | 87 | eleq1d 2419 |
. . . . . . . . . . . . . 14
⊢ (m = n →
(⟪m, (m +c 1c)⟫
∈ <fin ↔ ⟪n, (m
+c 1c)⟫ ∈ <fin )) |
89 | 86, 88 | syl5ibcom 211 |
. . . . . . . . . . . . 13
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (m = n →
⟪n, (m +c 1c)⟫
∈ <fin )) |
90 | | 3mix3 1126 |
. . . . . . . . . . . . 13
⊢ (⟪n, (m
+c 1c)⟫ ∈ <fin → (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin )) |
91 | 89, 90 | syl6 29 |
. . . . . . . . . . . 12
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (m = n →
(⟪(m +c
1c), n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin ))) |
92 | | ltfintr 4459 |
. . . . . . . . . . . . . . 15
⊢ ((n ∈ Nn ∧ m ∈ Nn ∧ (m +c 1c) ∈ Nn ) →
((⟪n, m⟫ ∈
<fin ∧ ⟪m, (m
+c 1c)⟫ ∈ <fin ) → ⟪n, (m
+c 1c)⟫ ∈ <fin )) |
93 | 73, 70, 72, 92 | syl3anc 1182 |
. . . . . . . . . . . . . 14
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → ((⟪n, m⟫
∈ <fin ∧ ⟪m,
(m +c
1c)⟫ ∈
<fin ) → ⟪n,
(m +c
1c)⟫ ∈
<fin )) |
94 | 86, 93 | mpan2d 655 |
. . . . . . . . . . . . 13
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (⟪n, m⟫
∈ <fin → ⟪n, (m
+c 1c)⟫ ∈ <fin )) |
95 | 94, 90 | syl6 29 |
. . . . . . . . . . . 12
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → (⟪n, m⟫
∈ <fin →
(⟪(m +c
1c), n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin ))) |
96 | 83, 91, 95 | 3jaod 1246 |
. . . . . . . . . . 11
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → ((⟪m, n⟫
∈ <fin
∨ m = n ∨
⟪n, m⟫ ∈
<fin ) → (⟪(m
+c 1c), n⟫ ∈
<fin ∨ (m +c 1c) =
n ∨
⟪n, (m +c 1c)⟫
∈ <fin ))) |
97 | 61, 96 | embantd 50 |
. . . . . . . . . 10
⊢ ((m ∈ Nn ∧ n ∈ Nn ∧ (m +c 1c) ≠
∅) → ((m ≠ ∅ →
(⟪m, n⟫ ∈
<fin ∨ m = n ∨ ⟪n,
m⟫ ∈ <fin )) → (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin ))) |
98 | 97 | 3expia 1153 |
. . . . . . . . 9
⊢ ((m ∈ Nn ∧ n ∈ Nn ) → ((m
+c 1c) ≠ ∅ → ((m
≠ ∅ → (⟪m, n⟫
∈ <fin
∨ m = n ∨
⟪n, m⟫ ∈
<fin )) → (⟪(m
+c 1c), n⟫ ∈
<fin ∨ (m +c 1c) =
n ∨
⟪n, (m +c 1c)⟫
∈ <fin )))) |
99 | 98 | com23 72 |
. . . . . . . 8
⊢ ((m ∈ Nn ∧ n ∈ Nn ) → ((m ≠
∅ → (⟪m, n⟫
∈ <fin
∨ m = n ∨
⟪n, m⟫ ∈
<fin )) → ((m
+c 1c) ≠ ∅ → (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin )))) |
100 | 99 | ex 423 |
. . . . . . 7
⊢ (m ∈ Nn → (n ∈ Nn → ((m ≠ ∅ →
(⟪m, n⟫ ∈
<fin ∨ m = n ∨ ⟪n,
m⟫ ∈ <fin )) → ((m +c 1c) ≠
∅ → (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin ))))) |
101 | 100 | a2d 23 |
. . . . . 6
⊢ (m ∈ Nn → ((n ∈ Nn → (m ≠ ∅ →
(⟪m, n⟫ ∈
<fin ∨ m = n ∨ ⟪n,
m⟫ ∈ <fin ))) → (n ∈ Nn → ((m
+c 1c) ≠ ∅ → (⟪(m +c 1c),
n⟫ ∈ <fin
∨ (m +c
1c) = n ∨ ⟪n,
(m +c
1c)⟫ ∈
<fin ))))) |
102 | 9, 18, 27, 36, 45, 58, 101 | finds 4411 |
. . . . 5
⊢ (M ∈ Nn → (n ∈ Nn → (M ≠ ∅ →
(⟪M, n⟫ ∈
<fin ∨ M = n ∨ ⟪n,
M⟫ ∈ <fin )))) |
103 | 102 | com12 27 |
. . . 4
⊢ (n ∈ Nn → (M ∈ Nn → (M ≠ ∅ →
(⟪M, n⟫ ∈
<fin ∨ M = n ∨ ⟪n,
M⟫ ∈ <fin )))) |
104 | 8, 103 | vtoclga 2920 |
. . 3
⊢ (N ∈ Nn → (M ∈ Nn → (M ≠ ∅ →
(⟪M, N⟫ ∈
<fin ∨ M = N ∨ ⟪N,
M⟫ ∈ <fin )))) |
105 | 104 | com12 27 |
. 2
⊢ (M ∈ Nn → (N ∈ Nn → (M ≠ ∅ →
(⟪M, N⟫ ∈
<fin ∨ M = N ∨ ⟪N,
M⟫ ∈ <fin )))) |
106 | 105 | 3imp 1145 |
1
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) →
(⟪M, N⟫ ∈
<fin ∨ M = N ∨ ⟪N,
M⟫ ∈ <fin )) |