New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3jaob | GIF version |
Description: Disjunction of 3 antecedents. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
3jaob | ⊢ (((φ ∨ χ ∨ θ) → ψ) ↔ ((φ → ψ) ∧ (χ → ψ) ∧ (θ → ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1124 | . . . 4 ⊢ (φ → (φ ∨ χ ∨ θ)) | |
2 | 1 | imim1i 54 | . . 3 ⊢ (((φ ∨ χ ∨ θ) → ψ) → (φ → ψ)) |
3 | 3mix2 1125 | . . . 4 ⊢ (χ → (φ ∨ χ ∨ θ)) | |
4 | 3 | imim1i 54 | . . 3 ⊢ (((φ ∨ χ ∨ θ) → ψ) → (χ → ψ)) |
5 | 3mix3 1126 | . . . 4 ⊢ (θ → (φ ∨ χ ∨ θ)) | |
6 | 5 | imim1i 54 | . . 3 ⊢ (((φ ∨ χ ∨ θ) → ψ) → (θ → ψ)) |
7 | 2, 4, 6 | 3jca 1132 | . 2 ⊢ (((φ ∨ χ ∨ θ) → ψ) → ((φ → ψ) ∧ (χ → ψ) ∧ (θ → ψ))) |
8 | 3jao 1243 | . 2 ⊢ (((φ → ψ) ∧ (χ → ψ) ∧ (θ → ψ)) → ((φ ∨ χ ∨ θ) → ψ)) | |
9 | 7, 8 | impbii 180 | 1 ⊢ (((φ ∨ χ ∨ θ) → ψ) ↔ ((φ → ψ) ∧ (χ → ψ) ∧ (θ → ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ w3o 933 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |