New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orbi12i | GIF version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 | ⊢ (φ ↔ ψ) |
orbi12i.2 | ⊢ (χ ↔ θ) |
Ref | Expression |
---|---|
orbi12i | ⊢ ((φ ∨ χ) ↔ (ψ ∨ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 | . . 3 ⊢ (χ ↔ θ) | |
2 | 1 | orbi2i 505 | . 2 ⊢ ((φ ∨ χ) ↔ (φ ∨ θ)) |
3 | orbi12i.1 | . . 3 ⊢ (φ ↔ ψ) | |
4 | 3 | orbi1i 506 | . 2 ⊢ ((φ ∨ θ) ↔ (ψ ∨ θ)) |
5 | 2, 4 | bitri 240 | 1 ⊢ ((φ ∨ χ) ↔ (ψ ∨ θ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: pm4.78 565 andir 838 anddi 840 dfbi3 863 4exmid 905 3orbi123i 1141 3or6 1263 cadcoma 1395 neorian 2604 elsymdif 3224 sspsstri 3372 rexun 3444 indi 3502 symdif2 3521 unab 3522 inundif 3629 elimif 3692 dfpr2 3750 ssunsn 3867 ssunpr 3869 sspr 3870 sstp 3871 pwpr 3884 pwtp 3885 unipr 3906 uniun 3911 iunun 4047 iunxun 4048 axprimlem2 4090 axsiprim 4094 axins2prim 4096 axins3prim 4097 pwadjoin 4120 pw1un 4164 dfaddc2 4382 nnsucelrlem1 4425 nndisjeq 4430 ltfinex 4465 ltfintrilem1 4466 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 vfinspss 4552 dfphi2 4570 dfop2lem1 4574 proj1op 4601 proj2op 4602 eqop 4612 brun 4693 setconslem2 4733 setconslem3 4734 setconslem7 4738 dfswap2 4742 dmun 4913 xpeq0 5047 cupex 5817 connexex 5914 enprmaplem4 6080 leconnnc 6219 nmembers1lem3 6271 nncdiv3lem2 6277 nchoicelem16 6305 nchoicelem17 6306 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |