NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cadcomb GIF version

Theorem cadcomb 1396
Description: Commutative law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cadcomb (cadd(φ, ψ, χ) ↔ cadd(φ, χ, ψ))

Proof of Theorem cadcomb
StepHypRef Expression
1 3orcoma 942 . . 3 (((φ ψ) (φ χ) (ψ χ)) ↔ ((φ χ) (φ ψ) (ψ χ)))
2 biid 227 . . . 4 ((φ χ) ↔ (φ χ))
3 biid 227 . . . 4 ((φ ψ) ↔ (φ ψ))
4 ancom 437 . . . 4 ((ψ χ) ↔ (χ ψ))
52, 3, 43orbi123i 1141 . . 3 (((φ χ) (φ ψ) (ψ χ)) ↔ ((φ χ) (φ ψ) (χ ψ)))
61, 5bitri 240 . 2 (((φ ψ) (φ χ) (ψ χ)) ↔ ((φ χ) (φ ψ) (χ ψ)))
7 cador 1391 . 2 (cadd(φ, ψ, χ) ↔ ((φ ψ) (φ χ) (ψ χ)))
8 cador 1391 . 2 (cadd(φ, χ, ψ) ↔ ((φ χ) (φ ψ) (χ ψ)))
96, 7, 83bitr4i 268 1 (cadd(φ, ψ, χ) ↔ cadd(φ, χ, ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3o 933  caddwcad 1379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-xor 1305  df-cad 1381
This theorem is referenced by:  cadrot  1397
  Copyright terms: Public domain W3C validator