New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cadcomb | GIF version |
Description: Commutative law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
cadcomb | ⊢ (cadd(φ, ψ, χ) ↔ cadd(φ, χ, ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3orcoma 942 | . . 3 ⊢ (((φ ∧ ψ) ∨ (φ ∧ χ) ∨ (ψ ∧ χ)) ↔ ((φ ∧ χ) ∨ (φ ∧ ψ) ∨ (ψ ∧ χ))) | |
2 | biid 227 | . . . 4 ⊢ ((φ ∧ χ) ↔ (φ ∧ χ)) | |
3 | biid 227 | . . . 4 ⊢ ((φ ∧ ψ) ↔ (φ ∧ ψ)) | |
4 | ancom 437 | . . . 4 ⊢ ((ψ ∧ χ) ↔ (χ ∧ ψ)) | |
5 | 2, 3, 4 | 3orbi123i 1141 | . . 3 ⊢ (((φ ∧ χ) ∨ (φ ∧ ψ) ∨ (ψ ∧ χ)) ↔ ((φ ∧ χ) ∨ (φ ∧ ψ) ∨ (χ ∧ ψ))) |
6 | 1, 5 | bitri 240 | . 2 ⊢ (((φ ∧ ψ) ∨ (φ ∧ χ) ∨ (ψ ∧ χ)) ↔ ((φ ∧ χ) ∨ (φ ∧ ψ) ∨ (χ ∧ ψ))) |
7 | cador 1391 | . 2 ⊢ (cadd(φ, ψ, χ) ↔ ((φ ∧ ψ) ∨ (φ ∧ χ) ∨ (ψ ∧ χ))) | |
8 | cador 1391 | . 2 ⊢ (cadd(φ, χ, ψ) ↔ ((φ ∧ χ) ∨ (φ ∧ ψ) ∨ (χ ∧ ψ))) | |
9 | 6, 7, 8 | 3bitr4i 268 | 1 ⊢ (cadd(φ, ψ, χ) ↔ cadd(φ, χ, ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∨ w3o 933 caddwcad 1379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-xor 1305 df-cad 1381 |
This theorem is referenced by: cadrot 1397 |
Copyright terms: Public domain | W3C validator |