New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ne3anior | GIF version |
Description: A De Morgan's law for inequality. (Contributed by NM, 30-Sep-2013.) |
Ref | Expression |
---|---|
ne3anior | ⊢ ((A ≠ B ∧ C ≠ D ∧ E ≠ F) ↔ ¬ (A = B ∨ C = D ∨ E = F)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anor 948 | . 2 ⊢ ((A ≠ B ∧ C ≠ D ∧ E ≠ F) ↔ ¬ (¬ A ≠ B ∨ ¬ C ≠ D ∨ ¬ E ≠ F)) | |
2 | nne 2521 | . . 3 ⊢ (¬ A ≠ B ↔ A = B) | |
3 | nne 2521 | . . 3 ⊢ (¬ C ≠ D ↔ C = D) | |
4 | nne 2521 | . . 3 ⊢ (¬ E ≠ F ↔ E = F) | |
5 | 2, 3, 4 | 3orbi123i 1141 | . 2 ⊢ ((¬ A ≠ B ∨ ¬ C ≠ D ∨ ¬ E ≠ F) ↔ (A = B ∨ C = D ∨ E = F)) |
6 | 1, 5 | xchbinx 301 | 1 ⊢ ((A ≠ B ∧ C ≠ D ∧ E ≠ F) ↔ ¬ (A = B ∨ C = D ∨ E = F)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ w3o 933 ∧ w3a 934 = wceq 1642 ≠ wne 2517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-ne 2519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |