New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3orcoma | GIF version |
Description: Commutation law for triple disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
3orcoma | ⊢ ((φ ∨ ψ ∨ χ) ↔ (ψ ∨ φ ∨ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | or12 509 | . 2 ⊢ ((φ ∨ (ψ ∨ χ)) ↔ (ψ ∨ (φ ∨ χ))) | |
2 | 3orass 937 | . 2 ⊢ ((φ ∨ ψ ∨ χ) ↔ (φ ∨ (ψ ∨ χ))) | |
3 | 3orass 937 | . 2 ⊢ ((ψ ∨ φ ∨ χ) ↔ (ψ ∨ (φ ∨ χ))) | |
4 | 1, 2, 3 | 3bitr4i 268 | 1 ⊢ ((φ ∨ ψ ∨ χ) ↔ (ψ ∨ φ ∨ χ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∨ w3o 933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-3or 935 |
This theorem is referenced by: cadcomb 1396 |
Copyright terms: Public domain | W3C validator |