| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > or12 | GIF version | ||
| Description: Swap two disjuncts. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
| Ref | Expression |
|---|---|
| or12 | ⊢ ((φ ∨ (ψ ∨ χ)) ↔ (ψ ∨ (φ ∨ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.5 508 | . 2 ⊢ ((φ ∨ (ψ ∨ χ)) → (ψ ∨ (φ ∨ χ))) | |
| 2 | pm1.5 508 | . 2 ⊢ ((ψ ∨ (φ ∨ χ)) → (φ ∨ (ψ ∨ χ))) | |
| 3 | 1, 2 | impbii 180 | 1 ⊢ ((φ ∨ (ψ ∨ χ)) ↔ (ψ ∨ (φ ∨ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: orass 510 or32 513 or4 514 3orcoma 942 |
| Copyright terms: Public domain | W3C validator |