| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3ancoma | GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3ancoma | ⊢ ((φ ∧ ψ ∧ χ) ↔ (ψ ∧ φ ∧ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 437 | . . 3 ⊢ ((φ ∧ ψ) ↔ (ψ ∧ φ)) | |
| 2 | 1 | anbi1i 676 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) ↔ ((ψ ∧ φ) ∧ χ)) |
| 3 | df-3an 936 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
| 4 | df-3an 936 | . 2 ⊢ ((ψ ∧ φ ∧ χ) ↔ ((ψ ∧ φ) ∧ χ)) | |
| 5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ ((φ ∧ ψ ∧ χ) ↔ (ψ ∧ φ ∧ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3ancomb 943 3anrev 945 3anan12 947 3com12 1155 cnvsi 5519 oqelins4 5795 brpprod 5840 |
| Copyright terms: Public domain | W3C validator |