New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3ancoma | GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((φ ∧ ψ ∧ χ) ↔ (ψ ∧ φ ∧ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . . 3 ⊢ ((φ ∧ ψ) ↔ (ψ ∧ φ)) | |
2 | 1 | anbi1i 676 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) ↔ ((ψ ∧ φ) ∧ χ)) |
3 | df-3an 936 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
4 | df-3an 936 | . 2 ⊢ ((ψ ∧ φ ∧ χ) ↔ ((ψ ∧ φ) ∧ χ)) | |
5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ ((φ ∧ ψ ∧ χ) ↔ (ψ ∧ φ ∧ χ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3ancomb 943 3anrev 945 3anan12 947 3com12 1155 cnvsi 5519 oqelins4 5795 brpprod 5840 |
Copyright terms: Public domain | W3C validator |