New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alexn | GIF version |
Description: A relationship between two quantifiers and negation. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
alexn | ⊢ (∀x∃y ¬ φ ↔ ¬ ∃x∀yφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal 1574 | . . 3 ⊢ (∃y ¬ φ ↔ ¬ ∀yφ) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀x∃y ¬ φ ↔ ∀x ¬ ∀yφ) |
3 | alnex 1543 | . 2 ⊢ (∀x ¬ ∀yφ ↔ ¬ ∃x∀yφ) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (∀x∃y ¬ φ ↔ ¬ ∃x∀yφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 2exnexn 1580 |
Copyright terms: Public domain | W3C validator |