| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > alexn | GIF version | ||
| Description: A relationship between two quantifiers and negation. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| alexn | ⊢ (∀x∃y ¬ φ ↔ ¬ ∃x∀yφ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnal 1574 | . . 3 ⊢ (∃y ¬ φ ↔ ¬ ∀yφ) | |
| 2 | 1 | albii 1566 | . 2 ⊢ (∀x∃y ¬ φ ↔ ∀x ¬ ∀yφ) |
| 3 | alnex 1543 | . 2 ⊢ (∀x ¬ ∀yφ ↔ ¬ ∃x∀yφ) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (∀x∃y ¬ φ ↔ ¬ ∃x∀yφ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: 2exnexn 1580 |
| Copyright terms: Public domain | W3C validator |