New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alinexa | GIF version |
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
alinexa | ⊢ (∀x(φ → ¬ ψ) ↔ ¬ ∃x(φ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 411 | . . 3 ⊢ ((φ → ¬ ψ) ↔ ¬ (φ ∧ ψ)) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀x(φ → ¬ ψ) ↔ ∀x ¬ (φ ∧ ψ)) |
3 | alnex 1543 | . 2 ⊢ (∀x ¬ (φ ∧ ψ) ↔ ¬ ∃x(φ ∧ ψ)) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (∀x(φ → ¬ ψ) ↔ ¬ ∃x(φ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: equs3 1644 axi11e 2332 ralnex 2625 |
Copyright terms: Public domain | W3C validator |