NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  alinexa GIF version

Theorem alinexa 1578
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
alinexa (x(φ → ¬ ψ) ↔ ¬ x(φ ψ))

Proof of Theorem alinexa
StepHypRef Expression
1 imnan 411 . . 3 ((φ → ¬ ψ) ↔ ¬ (φ ψ))
21albii 1566 . 2 (x(φ → ¬ ψ) ↔ x ¬ (φ ψ))
3 alnex 1543 . 2 (x ¬ (φ ψ) ↔ ¬ x(φ ψ))
42, 3bitri 240 1 (x(φ → ¬ ψ) ↔ ¬ x(φ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  equs3  1644  axi11e  2332  ralnex  2625
  Copyright terms: Public domain W3C validator