New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alrimdh | GIF version |
Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
alrimdh.1 | ⊢ (φ → ∀xφ) |
alrimdh.2 | ⊢ (ψ → ∀xψ) |
alrimdh.3 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
alrimdh | ⊢ (φ → (ψ → ∀xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimdh.2 | . 2 ⊢ (ψ → ∀xψ) | |
2 | alrimdh.1 | . . 3 ⊢ (φ → ∀xφ) | |
3 | alrimdh.3 | . . 3 ⊢ (φ → (ψ → χ)) | |
4 | 2, 3 | alimdh 1563 | . 2 ⊢ (φ → (∀xψ → ∀xχ)) |
5 | 1, 4 | syl5 28 | 1 ⊢ (φ → (ψ → ∀xχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1546 ax-5 1557 |
This theorem is referenced by: alrimdv 1633 ax11indn 2195 |
Copyright terms: Public domain | W3C validator |