NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  alrimdh GIF version

Theorem alrimdh 1587
Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
alrimdh.1 (φxφ)
alrimdh.2 (ψxψ)
alrimdh.3 (φ → (ψχ))
Assertion
Ref Expression
alrimdh (φ → (ψxχ))

Proof of Theorem alrimdh
StepHypRef Expression
1 alrimdh.2 . 2 (ψxψ)
2 alrimdh.1 . . 3 (φxφ)
3 alrimdh.3 . . 3 (φ → (ψχ))
42, 3alimdh 1563 . 2 (φ → (xψxχ))
51, 4syl5 28 1 (φ → (ψxχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1546  ax-5 1557
This theorem is referenced by:  alrimdv  1633  ax11indn  2195
  Copyright terms: Public domain W3C validator