New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exancom | GIF version |
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
exancom | ⊢ (∃x(φ ∧ ψ) ↔ ∃x(ψ ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . 2 ⊢ ((φ ∧ ψ) ↔ (ψ ∧ φ)) | |
2 | 1 | exbii 1582 | 1 ⊢ (∃x(φ ∧ ψ) ↔ ∃x(ψ ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: 19.29r 1597 19.42 1880 risset 2662 morex 3021 pwpw0 3856 pwsnALT 3883 dfuni2 3894 eluni2 3896 unipr 3906 dfiun2g 4000 dfimak2 4299 insklem 4305 el1st 4730 setconslem6 4737 dfcnv2 5101 imadif 5172 addcfnex 5825 addccan2nclem1 6264 |
Copyright terms: Public domain | W3C validator |