NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eximdh GIF version

Theorem eximdh 1588
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
Hypotheses
Ref Expression
eximdh.1 (φxφ)
eximdh.2 (φ → (ψχ))
Assertion
Ref Expression
eximdh (φ → (xψxχ))

Proof of Theorem eximdh
StepHypRef Expression
1 eximdh.1 . . 3 (φxφ)
2 eximdh.2 . . 3 (φ → (ψχ))
31, 2alrimih 1565 . 2 (φx(ψχ))
4 exim 1575 . 2 (x(ψχ) → (xψxχ))
53, 4syl 15 1 (φ → (xψxχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  eximdv  1622  eximd  1770
  Copyright terms: Public domain W3C validator