New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eximdh | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.) |
Ref | Expression |
---|---|
eximdh.1 | ⊢ (φ → ∀xφ) |
eximdh.2 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
eximdh | ⊢ (φ → (∃xψ → ∃xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximdh.1 | . . 3 ⊢ (φ → ∀xφ) | |
2 | eximdh.2 | . . 3 ⊢ (φ → (ψ → χ)) | |
3 | 1, 2 | alrimih 1565 | . 2 ⊢ (φ → ∀x(ψ → χ)) |
4 | exim 1575 | . 2 ⊢ (∀x(ψ → χ) → (∃xψ → ∃xχ)) | |
5 | 3, 4 | syl 15 | 1 ⊢ (φ → (∃xψ → ∃xχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: eximdv 1622 eximd 1770 |
Copyright terms: Public domain | W3C validator |