New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax11indn | GIF version |
Description: Induction step for constructing a substitution instance of ax-11o 2141 without using ax-11o 2141. Negation case. (Contributed by NM, 21-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax11indn.1 | ⊢ (¬ ∀x x = y → (x = y → (φ → ∀x(x = y → φ)))) |
Ref | Expression |
---|---|
ax11indn | ⊢ (¬ ∀x x = y → (x = y → (¬ φ → ∀x(x = y → ¬ φ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1756 | . . 3 ⊢ ((x = y ∧ ¬ φ) → ∃x(x = y ∧ ¬ φ)) | |
2 | exanali 1585 | . . . 4 ⊢ (∃x(x = y ∧ ¬ φ) ↔ ¬ ∀x(x = y → φ)) | |
3 | hbn1 1730 | . . . . 5 ⊢ (¬ ∀x x = y → ∀x ¬ ∀x x = y) | |
4 | hbn1 1730 | . . . . 5 ⊢ (¬ ∀x(x = y → φ) → ∀x ¬ ∀x(x = y → φ)) | |
5 | ax11indn.1 | . . . . . . 7 ⊢ (¬ ∀x x = y → (x = y → (φ → ∀x(x = y → φ)))) | |
6 | con3 126 | . . . . . . 7 ⊢ ((φ → ∀x(x = y → φ)) → (¬ ∀x(x = y → φ) → ¬ φ)) | |
7 | 5, 6 | syl6 29 | . . . . . 6 ⊢ (¬ ∀x x = y → (x = y → (¬ ∀x(x = y → φ) → ¬ φ))) |
8 | 7 | com23 72 | . . . . 5 ⊢ (¬ ∀x x = y → (¬ ∀x(x = y → φ) → (x = y → ¬ φ))) |
9 | 3, 4, 8 | alrimdh 1587 | . . . 4 ⊢ (¬ ∀x x = y → (¬ ∀x(x = y → φ) → ∀x(x = y → ¬ φ))) |
10 | 2, 9 | syl5bi 208 | . . 3 ⊢ (¬ ∀x x = y → (∃x(x = y ∧ ¬ φ) → ∀x(x = y → ¬ φ))) |
11 | 1, 10 | syl5 28 | . 2 ⊢ (¬ ∀x x = y → ((x = y ∧ ¬ φ) → ∀x(x = y → ¬ φ))) |
12 | 11 | exp3a 425 | 1 ⊢ (¬ ∀x x = y → (x = y → (¬ φ → ∀x(x = y → ¬ φ)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: ax11indi 2196 |
Copyright terms: Public domain | W3C validator |