New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > an13s | GIF version |
Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Ref | Expression |
---|---|
an13s | ⊢ ((χ ∧ (ψ ∧ φ)) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12s.1 | . . . 4 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) | |
2 | 1 | exp32 588 | . . 3 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | com13 74 | . 2 ⊢ (χ → (ψ → (φ → θ))) |
4 | 3 | imp32 422 | 1 ⊢ ((χ ∧ (ψ ∧ φ)) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |