NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  an13s GIF version

Theorem an13s 778
Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.)
Hypothesis
Ref Expression
an12s.1 ((φ (ψ χ)) → θ)
Assertion
Ref Expression
an13s ((χ (ψ φ)) → θ)

Proof of Theorem an13s
StepHypRef Expression
1 an12s.1 . . . 4 ((φ (ψ χ)) → θ)
21exp32 588 . . 3 (φ → (ψ → (χθ)))
32com13 74 . 2 (χ → (ψ → (φθ)))
43imp32 422 1 ((χ (ψ φ)) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator