New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imp32 | GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (φ → (ψ → (χ → θ))) |
Ref | Expression |
---|---|
imp32 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . 3 ⊢ (φ → (ψ → (χ → θ))) | |
2 | 1 | imp3a 420 | . 2 ⊢ (φ → ((ψ ∧ χ) → θ)) |
3 | 2 | imp 418 | 1 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: imp42 577 impr 602 anasss 628 an13s 778 3expb 1152 reuss2 3536 reupick 3540 tfinnn 4535 f1o2d 5728 |
Copyright terms: Public domain | W3C validator |