New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exp32 | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp32.1 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Ref | Expression |
---|---|
exp32 | ⊢ (φ → (ψ → (χ → θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp32.1 | . . 3 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → ((ψ ∧ χ) → θ)) |
3 | 2 | exp3a 425 | 1 ⊢ (φ → (ψ → (χ → θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: exp44 596 exp45 597 expr 598 anassrs 629 an13s 778 3impb 1147 ax11eq 2193 ax11el 2194 nnsucelr 4429 ncfinraise 4482 nnpw1ex 4485 tfinltfinlem1 4501 sfintfin 4533 sfinltfin 4536 funfvima3 5462 isoini 5498 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |