NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exp32 GIF version

Theorem exp32 588
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp32.1 ((φ (ψ χ)) → θ)
Assertion
Ref Expression
exp32 (φ → (ψ → (χθ)))

Proof of Theorem exp32
StepHypRef Expression
1 exp32.1 . . 3 ((φ (ψ χ)) → θ)
21ex 423 . 2 (φ → ((ψ χ) → θ))
32exp3a 425 1 (φ → (ψ → (χθ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  exp44  596  exp45  597  expr  598  anassrs  629  an13s  778  3impb  1147  ax11eq  2193  ax11el  2194  nnsucelr  4429  ncfinraise  4482  nnpw1ex  4485  tfinltfinlem1  4501  sfintfin  4533  sfinltfin  4536  funfvima3  5462  isoini  5498  nchoicelem19  6308
  Copyright terms: Public domain W3C validator