NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  an31 GIF version

Theorem an31 775
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.)
Assertion
Ref Expression
an31 (((φ ψ) χ) ↔ ((χ ψ) φ))

Proof of Theorem an31
StepHypRef Expression
1 an13 774 . 2 ((φ (ψ χ)) ↔ (χ (ψ φ)))
2 anass 630 . 2 (((φ ψ) χ) ↔ (φ (ψ χ)))
3 anass 630 . 2 (((χ ψ) φ) ↔ (χ (ψ φ)))
41, 2, 33bitr4i 268 1 (((φ ψ) χ) ↔ ((χ ψ) φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  euind  3024  reuind  3040
  Copyright terms: Public domain W3C validator