New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > an31 | GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.) |
Ref | Expression |
---|---|
an31 | ⊢ (((φ ∧ ψ) ∧ χ) ↔ ((χ ∧ ψ) ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an13 774 | . 2 ⊢ ((φ ∧ (ψ ∧ χ)) ↔ (χ ∧ (ψ ∧ φ))) | |
2 | anass 630 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) ↔ (φ ∧ (ψ ∧ χ))) | |
3 | anass 630 | . 2 ⊢ (((χ ∧ ψ) ∧ φ) ↔ (χ ∧ (ψ ∧ φ))) | |
4 | 1, 2, 3 | 3bitr4i 268 | 1 ⊢ (((φ ∧ ψ) ∧ χ) ↔ ((χ ∧ ψ) ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: euind 3024 reuind 3040 |
Copyright terms: Public domain | W3C validator |