| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > an13 | GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.) |
| Ref | Expression |
|---|---|
| an13 | ⊢ ((φ ∧ (ψ ∧ χ)) ↔ (χ ∧ (ψ ∧ φ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an12 772 | . 2 ⊢ ((φ ∧ (ψ ∧ χ)) ↔ (ψ ∧ (φ ∧ χ))) | |
| 2 | anass 630 | . 2 ⊢ (((ψ ∧ φ) ∧ χ) ↔ (ψ ∧ (φ ∧ χ))) | |
| 3 | ancom 437 | . 2 ⊢ (((ψ ∧ φ) ∧ χ) ↔ (χ ∧ (ψ ∧ φ))) | |
| 4 | 1, 2, 3 | 3bitr2i 264 | 1 ⊢ ((φ ∧ (ψ ∧ χ)) ↔ (χ ∧ (ψ ∧ φ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: an31 775 eqvinop 4607 elxp2 4803 iunfopab 5205 |
| Copyright terms: Public domain | W3C validator |