NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  an13 GIF version

Theorem an13 774
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.)
Assertion
Ref Expression
an13 ((φ (ψ χ)) ↔ (χ (ψ φ)))

Proof of Theorem an13
StepHypRef Expression
1 an12 772 . 2 ((φ (ψ χ)) ↔ (ψ (φ χ)))
2 anass 630 . 2 (((ψ φ) χ) ↔ (ψ (φ χ)))
3 ancom 437 . 2 (((ψ φ) χ) ↔ (χ (ψ φ)))
41, 2, 33bitr2i 264 1 ((φ (ψ χ)) ↔ (χ (ψ φ)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  an31  775  eqvinop  4607  elxp2  4803  iunfopab  5205
  Copyright terms: Public domain W3C validator