New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anass | GIF version |
Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
anass | ⊢ (((φ ∧ ψ) ∧ χ) ↔ (φ ∧ (ψ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((φ ∧ (ψ ∧ χ)) → (φ ∧ (ψ ∧ χ))) | |
2 | 1 | anassrs 629 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) → (φ ∧ (ψ ∧ χ))) |
3 | id 19 | . . 3 ⊢ (((φ ∧ ψ) ∧ χ) → ((φ ∧ ψ) ∧ χ)) | |
4 | 3 | anasss 628 | . 2 ⊢ ((φ ∧ (ψ ∧ χ)) → ((φ ∧ ψ) ∧ χ)) |
5 | 2, 4 | impbii 180 | 1 ⊢ (((φ ∧ ψ) ∧ χ) ↔ (φ ∧ (ψ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: an12 772 an32 773 an13 774 an31 775 an4 797 3anass 938 4exdistr 1911 2sb5 2112 2sb5rf 2117 sbel2x 2125 r2exf 2650 r19.41 2763 ceqsex3v 2897 ceqsrex2v 2974 rexrab 3000 rexrab2 3004 2reu5 3044 rexss 3333 inass 3465 indifdir 3511 difin2 3516 difrab 3529 reupick3 3540 inssdif0 3617 rexdifsn 3843 opkelopkabg 4245 otkelins2kg 4253 otkelins3kg 4254 opkelcokg 4261 opkelimagekg 4271 dfnnc2 4395 addcass 4415 copsexg 4607 setconslem1 4731 setconslem6 4736 rabxp 4814 brres 4949 resopab2 5001 ssrnres 5059 cnvresima 5077 coass 5097 elxp4 5108 fncnv 5158 imadif 5171 dff1o2 5291 eqfnfv3 5394 isoini 5497 f1oiso 5499 oprabid 5550 resoprab2 5582 fnov 5591 ov3 5599 mpt2eq123 5661 mptpreima 5682 mpt2mptx 5708 restxp 5786 brimage 5793 txpcofun 5803 addcfnex 5824 brpprod 5839 clos1induct 5880 frds 5935 lecex 6115 ceexlem1 6173 tcfnex 6244 nmembers1lem3 6270 nncdiv3lem1 6275 nchoicelem11 6299 nchoicelem16 6304 |
Copyright terms: Public domain | W3C validator |