| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > anabs1 | GIF version | ||
| Description: Absorption into embedded conjunct. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabs1 | ⊢ (((φ ∧ ψ) ∧ φ) ↔ (φ ∧ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 443 | . . 3 ⊢ ((φ ∧ ψ) → φ) | |
| 2 | 1 | pm4.71i 613 | . 2 ⊢ ((φ ∧ ψ) ↔ ((φ ∧ ψ) ∧ φ)) |
| 3 | 2 | bicomi 193 | 1 ⊢ (((φ ∧ ψ) ∧ φ) ↔ (φ ∧ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |