NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anabs5 GIF version

Theorem anabs5 784
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5 ((φ (φ ψ)) ↔ (φ ψ))

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 490 . . 3 (φ → (ψ ↔ (φ ψ)))
21bicomd 192 . 2 (φ → ((φ ψ) ↔ ψ))
32pm5.32i 618 1 ((φ (φ ψ)) ↔ (φ ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator