| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm4.71i | GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (φ → ψ) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (φ ↔ (φ ∧ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (φ → ψ) | |
| 2 | pm4.71 611 | . 2 ⊢ ((φ → ψ) ↔ (φ ↔ (φ ∧ ψ))) | |
| 3 | 1, 2 | mpbi 199 | 1 ⊢ (φ ↔ (φ ∧ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: pm4.24 624 pm4.45 669 anabs1 783 2eu5 2288 brres 4950 dff1o2 5292 map0e 6024 nchoicelem18 6307 |
| Copyright terms: Public domain | W3C validator |