New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3anidm12 | GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm12.1 | ⊢ ((φ ∧ φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
3anidm12 | ⊢ ((φ ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm12.1 | . . 3 ⊢ ((φ ∧ φ ∧ ψ) → χ) | |
2 | 1 | 3expib 1154 | . 2 ⊢ (φ → ((φ ∧ ψ) → χ)) |
3 | 2 | anabsi5 790 | 1 ⊢ ((φ ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3anidm13 1240 dedth3v 3708 eventfin 4517 oddtfin 4518 |
Copyright terms: Public domain | W3C validator |