NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3anidm12 GIF version

Theorem 3anidm12 1239
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((φ φ ψ) → χ)
Assertion
Ref Expression
3anidm12 ((φ ψ) → χ)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((φ φ ψ) → χ)
213expib 1154 . 2 (φ → ((φ ψ) → χ))
32anabsi5 790 1 ((φ ψ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3anidm13  1240  dedth3v  3708  eventfin  4517  oddtfin  4518
  Copyright terms: Public domain W3C validator