| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rspce | GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎxψ |
| rspc.2 | ⊢ (x = A → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| rspce | ⊢ ((A ∈ B ∧ ψ) → ∃x ∈ B φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2490 | . . . 4 ⊢ ℲxA | |
| 2 | nfv 1619 | . . . . 5 ⊢ Ⅎx A ∈ B | |
| 3 | rspc.1 | . . . . 5 ⊢ Ⅎxψ | |
| 4 | 2, 3 | nfan 1824 | . . . 4 ⊢ Ⅎx(A ∈ B ∧ ψ) |
| 5 | eleq1 2413 | . . . . 5 ⊢ (x = A → (x ∈ B ↔ A ∈ B)) | |
| 6 | rspc.2 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
| 7 | 5, 6 | anbi12d 691 | . . . 4 ⊢ (x = A → ((x ∈ B ∧ φ) ↔ (A ∈ B ∧ ψ))) |
| 8 | 1, 4, 7 | spcegf 2936 | . . 3 ⊢ (A ∈ B → ((A ∈ B ∧ ψ) → ∃x(x ∈ B ∧ φ))) |
| 9 | 8 | anabsi5 790 | . 2 ⊢ ((A ∈ B ∧ ψ) → ∃x(x ∈ B ∧ φ)) |
| 10 | df-rex 2621 | . 2 ⊢ (∃x ∈ B φ ↔ ∃x(x ∈ B ∧ φ)) | |
| 11 | 9, 10 | sylibr 203 | 1 ⊢ ((A ∈ B ∧ ψ) → ∃x ∈ B φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 |
| This theorem is referenced by: rspcev 2956 |
| Copyright terms: Public domain | W3C validator |