New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nanbi1 | GIF version |
Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbi1 | ⊢ ((φ ↔ ψ) → ((φ ⊼ χ) ↔ (ψ ⊼ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi1 687 | . . 3 ⊢ ((φ ↔ ψ) → ((φ ∧ χ) ↔ (ψ ∧ χ))) | |
2 | 1 | notbid 285 | . 2 ⊢ ((φ ↔ ψ) → (¬ (φ ∧ χ) ↔ ¬ (ψ ∧ χ))) |
3 | df-nan 1288 | . 2 ⊢ ((φ ⊼ χ) ↔ ¬ (φ ∧ χ)) | |
4 | df-nan 1288 | . 2 ⊢ ((ψ ⊼ χ) ↔ ¬ (ψ ∧ χ)) | |
5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ ((φ ↔ ψ) → ((φ ⊼ χ) ↔ (ψ ⊼ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nanbi2 1296 nanbi12 1297 nanbi1i 1298 nanbi1d 1301 |
Copyright terms: Public domain | W3C validator |