New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.75 | GIF version |
Description: Theorem *5.75 of [WhiteheadRussell] p. 126. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2012.) |
Ref | Expression |
---|---|
pm5.75 | ⊢ (((χ → ¬ ψ) ∧ (φ ↔ (ψ ∨ χ))) → ((φ ∧ ¬ ψ) ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi1 687 | . . 3 ⊢ ((φ ↔ (ψ ∨ χ)) → ((φ ∧ ¬ ψ) ↔ ((ψ ∨ χ) ∧ ¬ ψ))) | |
2 | orcom 376 | . . . . 5 ⊢ ((ψ ∨ χ) ↔ (χ ∨ ψ)) | |
3 | 2 | anbi1i 676 | . . . 4 ⊢ (((ψ ∨ χ) ∧ ¬ ψ) ↔ ((χ ∨ ψ) ∧ ¬ ψ)) |
4 | pm5.61 693 | . . . 4 ⊢ (((χ ∨ ψ) ∧ ¬ ψ) ↔ (χ ∧ ¬ ψ)) | |
5 | 3, 4 | bitri 240 | . . 3 ⊢ (((ψ ∨ χ) ∧ ¬ ψ) ↔ (χ ∧ ¬ ψ)) |
6 | 1, 5 | syl6bb 252 | . 2 ⊢ ((φ ↔ (ψ ∨ χ)) → ((φ ∧ ¬ ψ) ↔ (χ ∧ ¬ ψ))) |
7 | pm4.71 611 | . . . 4 ⊢ ((χ → ¬ ψ) ↔ (χ ↔ (χ ∧ ¬ ψ))) | |
8 | 7 | biimpi 186 | . . 3 ⊢ ((χ → ¬ ψ) → (χ ↔ (χ ∧ ¬ ψ))) |
9 | 8 | bicomd 192 | . 2 ⊢ ((χ → ¬ ψ) → ((χ ∧ ¬ ψ) ↔ χ)) |
10 | 6, 9 | sylan9bbr 681 | 1 ⊢ (((χ → ¬ ψ) ∧ (φ ↔ (ψ ∨ χ))) → ((φ ∧ ¬ ψ) ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |