NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ancomd GIF version

Theorem ancomd 438
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.)
Hypothesis
Ref Expression
ancomd.1 (φ → (ψ χ))
Assertion
Ref Expression
ancomd (φ → (χ ψ))

Proof of Theorem ancomd
StepHypRef Expression
1 ancomd.1 . 2 (φ → (ψ χ))
2 ancom 437 . 2 ((ψ χ) ↔ (χ ψ))
31, 2sylib 188 1 (φ → (χ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  simprd  449  2reu5  3045  brcnv  4893
  Copyright terms: Public domain W3C validator