Proof of Theorem 2reu5
Step | Hyp | Ref
| Expression |
1 | | r19.29r 2756 |
. . . . . . . 8
⊢ ((∃x ∈ A ∃y ∈ B φ ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) → ∃x ∈ A (∃y ∈ B φ ∧ ∀y ∈ B (φ → (x = z ∧ y = w)))) |
2 | | r19.29r 2756 |
. . . . . . . . 9
⊢ ((∃y ∈ B φ ∧ ∀y ∈ B (φ → (x = z ∧ y = w))) → ∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w)))) |
3 | 2 | reximi 2722 |
. . . . . . . 8
⊢ (∃x ∈ A (∃y ∈ B φ ∧ ∀y ∈ B (φ → (x = z ∧ y = w))) → ∃x ∈ A ∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w)))) |
4 | | pm3.35 570 |
. . . . . . . . . . 11
⊢ ((φ ∧ (φ → (x = z ∧ y = w))) → (x =
z ∧
y = w)) |
5 | 4 | reximi 2722 |
. . . . . . . . . 10
⊢ (∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w))) → ∃y ∈ B (x = z ∧ y = w)) |
6 | 5 | reximi 2722 |
. . . . . . . . 9
⊢ (∃x ∈ A ∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w))) → ∃x ∈ A ∃y ∈ B (x = z ∧ y = w)) |
7 | | eleq1 2413 |
. . . . . . . . . . . . . 14
⊢ (x = z →
(x ∈
A ↔ z ∈ A)) |
8 | | eleq1 2413 |
. . . . . . . . . . . . . 14
⊢ (y = w →
(y ∈
B ↔ w ∈ B)) |
9 | 7, 8 | bi2anan9 843 |
. . . . . . . . . . . . 13
⊢ ((x = z ∧ y = w) → ((x
∈ A ∧ y ∈ B) ↔
(z ∈
A ∧
w ∈
B))) |
10 | 9 | biimpac 472 |
. . . . . . . . . . . 12
⊢ (((x ∈ A ∧ y ∈ B) ∧ (x = z ∧ y = w)) → (z
∈ A ∧ w ∈ B)) |
11 | 10 | ancomd 438 |
. . . . . . . . . . 11
⊢ (((x ∈ A ∧ y ∈ B) ∧ (x = z ∧ y = w)) → (w
∈ B ∧ z ∈ A)) |
12 | 11 | ex 423 |
. . . . . . . . . 10
⊢ ((x ∈ A ∧ y ∈ B) → ((x =
z ∧
y = w)
→ (w ∈ B ∧ z ∈ A))) |
13 | 12 | rexlimivv 2744 |
. . . . . . . . 9
⊢ (∃x ∈ A ∃y ∈ B (x = z ∧ y = w) → (w
∈ B ∧ z ∈ A)) |
14 | 6, 13 | syl 15 |
. . . . . . . 8
⊢ (∃x ∈ A ∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w))) → (w
∈ B ∧ z ∈ A)) |
15 | 1, 3, 14 | 3syl 18 |
. . . . . . 7
⊢ ((∃x ∈ A ∃y ∈ B φ ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) → (w
∈ B ∧ z ∈ A)) |
16 | 15 | ex 423 |
. . . . . 6
⊢ (∃x ∈ A ∃y ∈ B φ → (∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) → (w
∈ B ∧ z ∈ A))) |
17 | 16 | pm4.71rd 616 |
. . . . 5
⊢ (∃x ∈ A ∃y ∈ B φ → (∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ ((w
∈ B ∧ z ∈ A) ∧ ∀x ∈ A ∀y ∈ B (φ →
(x = z
∧ y =
w))))) |
18 | | anass 630 |
. . . . 5
⊢ (((w ∈ B ∧ z ∈ A) ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ (w
∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ →
(x = z
∧ y =
w))))) |
19 | 17, 18 | syl6bb 252 |
. . . 4
⊢ (∃x ∈ A ∃y ∈ B φ → (∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ (w
∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ →
(x = z
∧ y =
w)))))) |
20 | 19 | 2exbidv 1628 |
. . 3
⊢ (∃x ∈ A ∃y ∈ B φ → (∃z∃w∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))))) |
21 | 20 | pm5.32i 618 |
. 2
⊢ ((∃x ∈ A ∃y ∈ B φ ∧ ∃z∃w∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ (∃x ∈ A ∃y ∈ B φ ∧ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))))) |
22 | | 2reu5lem3 3044 |
. 2
⊢ ((∃!x ∈ A ∃!y ∈ B φ ∧ ∀x ∈ A ∃*y ∈ B φ) ↔ (∃x ∈ A ∃y ∈ B φ ∧ ∃z∃w∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))) |
23 | | df-rex 2621 |
. . . 4
⊢ (∃z ∈ A ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ ∃z(z ∈ A ∧ ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))) |
24 | | r19.42v 2766 |
. . . . . 6
⊢ (∃w ∈ B (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ (z
∈ A ∧ ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ →
(x = z
∧ y =
w)))) |
25 | | df-rex 2621 |
. . . . . 6
⊢ (∃w ∈ B (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ ∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))))) |
26 | 24, 25 | bitr3i 242 |
. . . . 5
⊢ ((z ∈ A ∧ ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ ∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))))) |
27 | 26 | exbii 1582 |
. . . 4
⊢ (∃z(z ∈ A ∧ ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))))) |
28 | 23, 27 | bitri 240 |
. . 3
⊢ (∃z ∈ A ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))))) |
29 | 28 | anbi2i 675 |
. 2
⊢ ((∃x ∈ A ∃y ∈ B φ ∧ ∃z ∈ A ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ (∃x ∈ A ∃y ∈ B φ ∧ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))))) |
30 | 21, 22, 29 | 3bitr4i 268 |
1
⊢ ((∃!x ∈ A ∃!y ∈ B φ ∧ ∀x ∈ A ∃*y ∈ B φ) ↔ (∃x ∈ A ∃y ∈ B φ ∧ ∃z ∈ A ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))) |