Proof of Theorem 2reu5
| Step | Hyp | Ref
 | Expression | 
| 1 |   | r19.29r 2756 | 
. . . . . . . 8
⊢ ((∃x ∈ A ∃y ∈ B φ ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) → ∃x ∈ A (∃y ∈ B φ ∧ ∀y ∈ B (φ → (x = z ∧ y = w)))) | 
| 2 |   | r19.29r 2756 | 
. . . . . . . . 9
⊢ ((∃y ∈ B φ ∧ ∀y ∈ B (φ → (x = z ∧ y = w))) → ∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w)))) | 
| 3 | 2 | reximi 2722 | 
. . . . . . . 8
⊢ (∃x ∈ A (∃y ∈ B φ ∧ ∀y ∈ B (φ → (x = z ∧ y = w))) → ∃x ∈ A ∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w)))) | 
| 4 |   | pm3.35 570 | 
. . . . . . . . . . 11
⊢ ((φ ∧ (φ → (x = z ∧ y = w))) → (x =
z ∧
y = w)) | 
| 5 | 4 | reximi 2722 | 
. . . . . . . . . 10
⊢ (∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w))) → ∃y ∈ B (x = z ∧ y = w)) | 
| 6 | 5 | reximi 2722 | 
. . . . . . . . 9
⊢ (∃x ∈ A ∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w))) → ∃x ∈ A ∃y ∈ B (x = z ∧ y = w)) | 
| 7 |   | eleq1 2413 | 
. . . . . . . . . . . . . 14
⊢ (x = z →
(x ∈
A ↔ z ∈ A)) | 
| 8 |   | eleq1 2413 | 
. . . . . . . . . . . . . 14
⊢ (y = w →
(y ∈
B ↔ w ∈ B)) | 
| 9 | 7, 8 | bi2anan9 843 | 
. . . . . . . . . . . . 13
⊢ ((x = z ∧ y = w) → ((x
∈ A ∧ y ∈ B) ↔
(z ∈
A ∧
w ∈
B))) | 
| 10 | 9 | biimpac 472 | 
. . . . . . . . . . . 12
⊢ (((x ∈ A ∧ y ∈ B) ∧ (x = z ∧ y = w)) → (z
∈ A ∧ w ∈ B)) | 
| 11 | 10 | ancomd 438 | 
. . . . . . . . . . 11
⊢ (((x ∈ A ∧ y ∈ B) ∧ (x = z ∧ y = w)) → (w
∈ B ∧ z ∈ A)) | 
| 12 | 11 | ex 423 | 
. . . . . . . . . 10
⊢ ((x ∈ A ∧ y ∈ B) → ((x =
z ∧
y = w)
→ (w ∈ B ∧ z ∈ A))) | 
| 13 | 12 | rexlimivv 2744 | 
. . . . . . . . 9
⊢ (∃x ∈ A ∃y ∈ B (x = z ∧ y = w) → (w
∈ B ∧ z ∈ A)) | 
| 14 | 6, 13 | syl 15 | 
. . . . . . . 8
⊢ (∃x ∈ A ∃y ∈ B (φ ∧ (φ → (x = z ∧ y = w))) → (w
∈ B ∧ z ∈ A)) | 
| 15 | 1, 3, 14 | 3syl 18 | 
. . . . . . 7
⊢ ((∃x ∈ A ∃y ∈ B φ ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) → (w
∈ B ∧ z ∈ A)) | 
| 16 | 15 | ex 423 | 
. . . . . 6
⊢ (∃x ∈ A ∃y ∈ B φ → (∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) → (w
∈ B ∧ z ∈ A))) | 
| 17 | 16 | pm4.71rd 616 | 
. . . . 5
⊢ (∃x ∈ A ∃y ∈ B φ → (∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ ((w
∈ B ∧ z ∈ A) ∧ ∀x ∈ A ∀y ∈ B (φ →
(x = z
∧ y =
w))))) | 
| 18 |   | anass 630 | 
. . . . 5
⊢ (((w ∈ B ∧ z ∈ A) ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ (w
∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ →
(x = z
∧ y =
w))))) | 
| 19 | 17, 18 | syl6bb 252 | 
. . . 4
⊢ (∃x ∈ A ∃y ∈ B φ → (∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ (w
∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ →
(x = z
∧ y =
w)))))) | 
| 20 | 19 | 2exbidv 1628 | 
. . 3
⊢ (∃x ∈ A ∃y ∈ B φ → (∃z∃w∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))))) | 
| 21 | 20 | pm5.32i 618 | 
. 2
⊢ ((∃x ∈ A ∃y ∈ B φ ∧ ∃z∃w∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ (∃x ∈ A ∃y ∈ B φ ∧ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))))) | 
| 22 |   | 2reu5lem3 3044 | 
. 2
⊢ ((∃!x ∈ A ∃!y ∈ B φ ∧ ∀x ∈ A ∃*y ∈ B φ) ↔ (∃x ∈ A ∃y ∈ B φ ∧ ∃z∃w∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))) | 
| 23 |   | df-rex 2621 | 
. . . 4
⊢ (∃z ∈ A ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ ∃z(z ∈ A ∧ ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))) | 
| 24 |   | r19.42v 2766 | 
. . . . . 6
⊢ (∃w ∈ B (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ (z
∈ A ∧ ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ →
(x = z
∧ y =
w)))) | 
| 25 |   | df-rex 2621 | 
. . . . . 6
⊢ (∃w ∈ B (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ ∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))))) | 
| 26 | 24, 25 | bitr3i 242 | 
. . . . 5
⊢ ((z ∈ A ∧ ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ ∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))))) | 
| 27 | 26 | exbii 1582 | 
. . . 4
⊢ (∃z(z ∈ A ∧ ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))))) | 
| 28 | 23, 27 | bitri 240 | 
. . 3
⊢ (∃z ∈ A ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)) ↔ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))))) | 
| 29 | 28 | anbi2i 675 | 
. 2
⊢ ((∃x ∈ A ∃y ∈ B φ ∧ ∃z ∈ A ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w))) ↔ (∃x ∈ A ∃y ∈ B φ ∧ ∃z∃w(w ∈ B ∧ (z ∈ A ∧ ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))))) | 
| 30 | 21, 22, 29 | 3bitr4i 268 | 
1
⊢ ((∃!x ∈ A ∃!y ∈ B φ ∧ ∀x ∈ A ∃*y ∈ B φ) ↔ (∃x ∈ A ∃y ∈ B φ ∧ ∃z ∈ A ∃w ∈ B ∀x ∈ A ∀y ∈ B (φ → (x = z ∧ y = w)))) |