New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simprd | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 5-Aug-1993.) A translation of natural deduction rule ∧ ER (∧ elimination right), see natded in set.mm. (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
simprd.1 | ⊢ (φ → (ψ ∧ χ)) |
Ref | Expression |
---|---|
simprd | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprd.1 | . . 3 ⊢ (φ → (ψ ∧ χ)) | |
2 | 1 | ancomd 438 | . 2 ⊢ (φ → (χ ∧ ψ)) |
3 | 2 | simpld 445 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simprbi 450 simplbda 607 simp2 956 simp3 957 nic-mp 1436 nic-mpALT 1437 unssbd 3442 ncfindi 4476 ncfinsn 4477 ncfineleq 4478 ncfintfin 4496 tfinltfinlem1 4501 evennnul 4509 oddnnul 4510 1cvsfin 4543 vfintle 4547 vfin1cltv 4548 vfinncvntnn 4549 vfinspsslem1 4551 vfinncsp 4555 brrelrnex 4692 elima 4755 vtoclr 4817 brco 4884 brres 4950 elimasn 5020 feu 5243 fun11iun 5306 fv3 5342 opbr1st 5502 opbr2nd 5503 ndmovord 5621 caovmo 5646 elovex2 5651 brfns 5834 fnfullfunlem1 5857 frds 5936 brltc 6115 eqncg 6127 nmembers1lem3 6271 spacind 6288 nchoicelem3 6292 nchoicelem5 6294 nchoice 6309 |
Copyright terms: Public domain | W3C validator |