New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylib | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylib.1 | ⊢ (φ → ψ) |
sylib.2 | ⊢ (ψ ↔ χ) |
Ref | Expression |
---|---|
sylib | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylib.1 | . 2 ⊢ (φ → ψ) | |
2 | sylib.2 | . . 3 ⊢ (ψ ↔ χ) | |
3 | 2 | biimpi 186 | . 2 ⊢ (ψ → χ) |
4 | 1, 3 | syl 15 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bicomd 192 pm5.74d 238 bitri 240 3imtr3i 256 ord 366 orcomd 377 ancomd 438 pm4.71d 615 pm4.71rd 616 pm5.32d 620 imdistand 673 pclem6 896 3mix3 1126 ecase23d 1285 nic-ax 1438 nexdh 1589 exlimivOLD 1698 exlimd 1806 cbv3hv 1850 excomimOLD 1858 sbequi 2059 sbn 2062 spsbe 2075 spsbbi 2077 sb6rf 2091 sb9i 2094 eu2 2229 2euex 2276 2eu1 2284 eqcomd 2358 3eltr3g 2435 abbid 2467 neneqd 2533 syl5eqner 2542 3netr3g 2545 necon1bi 2560 necon4ai 2576 necon4i 2577 necomd 2600 r19.21bi 2713 nrexdv 2718 rexlimd 2736 rabbidva 2851 elisset 2870 euind 3024 rmoan 3035 reuind 3040 spsbc 3059 spesbc 3128 3sstr3g 3312 syl6sseq 3318 un00 3587 disjpss 3602 pssnel 3616 difprsn1 3848 diftpsn3 3850 difsnid 3855 ssunsn2 3866 sneqr 3873 unsneqsn 3888 intab 3957 uniintsn 3964 iinrab2 4030 riinn0 4041 rintn0 4057 preqr1 4125 preq12b 4128 iotanul 4355 iotacl 4363 dfiota4 4373 0nelsuc 4401 nnsucelrlem3 4427 nnsucelrlem4 4428 nndisjeq 4430 prepeano4 4452 ltfinirr 4458 lenltfin 4470 ssfin 4471 vfinnc 4472 ncfinlower 4484 nnpw1ex 4485 tfinltfin 4502 evenodddisj 4517 nnadjoin 4521 tfinnn 4535 sfinltfin 4536 sfin111 4537 vfinncvntsp 4550 vfinspsslem1 4551 vfinspeqtncv 4554 nulnnn 4557 phialllem1 4617 opeqex 4622 3brtr3g 4671 opeliunxp2 4823 rexxpf 4829 brel 4831 dmxp 4924 resopab2 5002 ndmima 5026 dmsnopss 5068 funeu 5132 funeu2 5133 funcnvuni 5162 imadif 5172 fneu2 5189 f00 5250 foconst 5281 foimacnv 5304 resdif 5307 resin 5308 f1ococnv2 5310 fv3 5342 dff3 5421 fsn 5433 fnressn 5439 isores1 5495 swapf1o 5512 resoprab2 5583 funoprabg 5584 fnmpt 5690 fmpt 5693 fmptd 5695 fnmpt2 5733 trtxp 5782 oqelins4 5795 qrpprod 5837 frds 5936 erth 5969 erdisj 5973 elqsn0 5994 mapsn 6027 fundmen 6044 enadjlem1 6060 enadj 6061 enpw1 6063 enprmaplem5 6081 nenpw1pwlem2 6086 mucnc 6132 ncdisjun 6137 peano4nc 6151 ncssfin 6152 ncspw1eu 6160 nntccl 6171 fnce 6177 ce0nnuli 6179 ce0addcnnul 6180 sbthlem1 6204 sbth 6207 dflec3 6222 0lt1c 6259 nmembers1lem2 6270 nncdiv3 6278 spacssnc 6285 nchoicelem12 6301 nchoicelem14 6303 nchoicelem17 6306 frecxp 6315 |
Copyright terms: Public domain | W3C validator |